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ABSTRACT

Transfer neural networks have been successfully applied in many domain adaptation tasks. The initiative
of most of the current transfer networks, essentially, is optimizing a single distance metric between the
source domain and target domain, while few studies integrate multiple metrics for training transfer net-
works. In this paper, we propose an architecture of transfer neural network equipped with hybrid repre-
sentations of domain discrepancy, which could incorporate the advantages of different types of metrics as
well as compensate their imperfections. In our architecture, the Maximum Mean Discrepancy (MMD) and
‘H-divergence based domain adaptations are combined for simultaneous distribution alignment and
domain confusion. Through extensive experiments, we find that the proposed method is able to achieve
compelling transfer performance across the datasets with domain discrepancy from small scale to large
scale. Especially, the proposed method can be promisingly used to predict the viewpoint of 3D-printed
workpiece even trained without labels of real images. The visualization of learned features and adapted
distributions by our transfer network highlights that the proposed approach could effectively learn the
similar features between two domains and deal with a wide range of transfer tasks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Excellent transfer ability is a critical feature of intelligent learn-
ing model and could help to transit from a known knowledge
domain to a new one. In practice, the domain discrepancy would
always happen and thus degrade the performance of neural net-
works because the testing samples may have distribution different
from those at training stage due to the influences of environment
and diversity of sensors. A mainstream of transfer learning, as
called domain adaptation, is always embedded in neural networks
and used to bridge the gap between source and target domains.
For example, person re-identification is a cross-camera retrieval
task and may be affected by the image style variations [1]. Thus
the style transfer [2,3], which is very hot recently, can be leveraged
to alleviate the difference between cameras and generate the
images which fit the target camera with the help of cycle-GAN
[4,5]. Analogously, the medical images captured from different
optical platforms also present domain shift and consequently, the
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application of domain adaptation approach will be greatly helpful.
Transfer learning can bring neural networks many benefits such as
increasing generalization ability, reducing the dependence on large
amounts of labels and accelerating the training procedure. In many
instances, training deep neural networks from scratch is difficult
and demands much of time and annotations. Therefore, a simple
and effective choice is to transfer the pre-trained model from
large-scale datasets, e.g. ImageNet [6], and then fine-tune the
whole networks or partial layers, which could work well in plenty
of practical applications such as video classification [7] and the
analysis of medical image [8,9]. In recent years, transfer neural net-
work appears as an effective method to learn more transferable
features and address the lack of substantial labels across tasks of
image classification, object detection and image segmentation
[15-17]. However, few methods, to our best knowledge, could
always hold a remarkable performance in a wide range of transfer
problems from small scale to large scale. From this perspective, it
points out that different domain adaptation neural networks have
their strengths, and yet reserves. Therefore, studying the hybrid
method of domain adaptation for neural networks to exert their
complementary competence is our main concern. Actually, trans-
ferring knowledge from labeled source domain to unlabeled target
domain, namely unsupervised domain adaptation, is quite challeng-
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ing and this problem will turn to be more difficult as the domain
discrepancy grows. Fig. 1 shows some samples for different trans-
fer tasks, and meanwhile reveals their domain discrepancy. For
most of transfer learning algorithms, handwritten digit sets [10-
13] are widely used as the basic datasets for testing. However, it
would be more challenging if the learning algorithms could trans-
fer the knowledge of synthetic workpiece images rendered in the
virtual environment to real ones [18]. Under this assumption,
firstly, it may allow us to train the neural networks with the unla-
beled real images and the synthetic images that are automatically
labeled in the virtual environment, which will free the tediously
manual work of labeling. Secondly, it may empower the trained
model to predict the viewpoint of real workpiece, which would
be greatly valuable to digital twin system in industry. Thus apply-
ing transfer neural networks to the problem of learning the domain
invariant knowledge of workpiece between virtual and real envi-
ronments is our main task.

In this paper, a hybrid method of domain adaptation is pro-
posed, which aims at optimizing the two different domain discrep-
ancy metrics simultaneously and establishing the transfer process
with the guidance of both Maximum Mean Discrepancy (MMD)
[19] and H-divergence [20]. Then, a generic transfer network archi-
tecture is constructed and we apply the hybrid method of domain
adaptation for the networks. Through the joint loss of main classi-
fication task and MMD, and alternate domain adversarial training,
the transfer neural network narrows the domain shift gradually
and finally becomes a shared predictor for source and target
domains. The main contributions of this paper are in the following:

e We discover that the aforementioned two independent metrics,
namely MMD and H-divergence, can co-exist and be well-
optimized simultaneously. The proposed method integrates
the advantages of different metrics and exhibits very excellent
overall transfer ability across all tasks from handwritten digit
datasets to workpiece datasets.

e The proposed deep model, which is trained with labeled syn-
thetic images and unlabeled real images, can be transferred to
the real environment and used to realize viewpoint estimation
of workpieces, which proceeds preliminary exploration in
applying transfer neural networks into industry.

e We elaborately analyze the transfer performance of neural net-
works by adopting advanced visualization techniques and the
results show that, indeed, the networks can learn the similar
features between source and target domains. Meanwhile, we
provide a standard approach and interface to build the subset
from ImageNet for studying transfer learning beyond the same
object classes.

The remainder of this paper is organized as follows. In Section 2,
two current main domain discrepancy representations as well as
the corresponding derived domain adaptation networks are
described. Then, we will detail the proposed network architecture
with the hybrid method of domain adaptation in Section 3. In Sec-
tion 4, extensive experiments are implemented and the learned
features by transfer learning are visualized. Finally, we conclude
the paper in Section 5.

2. Related work

Thanks to the appropriate domain discrepancy representation,
transfer neural networks are able to realize domain adaptation.
Therefore, the distance representation between source and target
domains is quite important and mainly can be divided into two
categories: 1) Maximum Mean Discrepancy (MMD) [19] and 2)
domain confusion based distance representation [20,21]. The for-

mer representation, namely MMD, utilizes the Euclidian distance
to measure the overall mean distance between two sets of observa-
tions in Hilbert space, while the latter one uses domain confusion
to represent the distance, which means that the domain discrep-
ancy will be smaller if the feature is more indistinguishable for a
binary classifier judging whether it comes from source domain or
target domain. In the following, we introduce the two domain dis-
crepancy representations and the derived transfer networks. For
convenient reference, Table 1 shows the main notations commonly
used in this paper.

2.1. MMD and related transfer neural networks

MMD is a kernel-based statistical test and is initially used in
answering whether two sample sets X°* and X' drawn from the
same distribution or not. The original form of MMD can be formu-
lated as

MMD (X', X') = Sup (Epcxef (x°) ~ Exorf (x') M

where F is a class of functions f : X — R. In order to compute MMD
conveniently, f can be expressed as an inner product in Reproducing
Kernel Hilbert Space (RKHS), namely f(X) = (f, #(X)), where ¢(-) is a
mapping function from feature space X to RKHS. Hereby, Eq. (1) can
be simplified as

MMD(X*.X") = S}UE([Exsexs (f, (%)) — Eyoxe (f, $(X1)))

= SUp<f, [Exsexs¢(xs) - [Ex‘exld)(xt»

e @)
= ?u})f([Exsexsd)(xs) - [Ex'ex“b(xt))
= H[Exsexsd)(xs) - [Ex‘exld)(xt)”‘

By squaring the MMD(X®,X"), then we are able to use kernel
trick to calculate each expanded term with Gaussian kernel func-
tion (¢(X), (X)) = k(x,X') = exp(—|x — X/||/262).

MMD is a very useful domain adaptation tool and firstly
adopted in the pioneering work DaNN [22] for object recognition.
Since DaNN merely has only two layers and is shallow, DDC [23]
uses deeper and more powerful networks, namely AlexNet [24],
which improves the feature learning and transfer performance.
Instead of utilizing single MMD for one adaptation layer like DaNN
and DDC, DAN [25] and JAN [26] adapt multiple fully connected
layers and use the variant versions of MMD, which aims at rein-
forcing the domain adaptation degree. Besides in deep transfer
learning, MMD is also widely used in the problem of heteroge-
neous domain adaptation as an important metric to measure the
discrepancy in shared latent space over the domains with different
modal data [27,28]. It should note that MMD is very computation-
ally efficient and could well measure the domain discrepancy
between two domains. However, the transfer performance would
empirically degrade if the dimensionality of the adapted feature
increases.

2.2. Domain confusion based distance representation

Another type of domain discrepancy representation is based on
the domain confusion. Although there are different formulations, e.
g H-divergence [20], HAH-divergence [21] and .4-distance [20],
the central ideas are same. Namely, the learned features from
source and target domains should be sufficiently mixed and indis-
tinguishable in a common space. Thus, the adapted features with
high domain confusion could be classified by shared decision
boundary. In order to quantize domain confusion based distance,
we suppose the source and target domains are S and 7 and the
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Fig. 1. An overview of image sets for transfer learning with different domain discrepancy. At left, there are four well-known domains used for handwritten digit recognition,
namely MNIST [10], USPS [11], MNIST-M [12] and SVHN [13]. In the middle, it is the Office-Caltech 10 image set [14] which also consists of four domains. At right, the
workpiece image set collected by us is comprised of 1) synthetic workpiece images which are rendered from CAD (Computer-aided Design) models at different poses in the
virtual environment, and 2) the real 3D-printed counterpart images. Unlike most of the tasks transferring knowledge within a real environment, intuitively, the transfer task
from textureless synthetic workpiece images to real environment should be with the large-scale domain discrepancy and very challenging due to the disturbances of

illumination, texture, shadow, and various backgrounds.

Table 1
Important notations.
Symbol Definition
S, T Source domain and target domain
xS, y* Source sample and its category label
xt yt Target sample and its category label
25,7 Domain label
X Feature space
F A set of functions mapping extracted feature to R
() Mapping function from the feature space to RKHS
k Gaussian kernel function
H A class of binary hypotheses
F Feature extractor
Ge Task classifier
Gy Domain classifier identifying which domain the sample x is from
0 Model parameters of neural network

samples from S are all labeled 0 while the target samples are
labeled 1. Given H a class of hypotheses h: X+ {0,1}, the H-
divergence between S and 7 can be written as

di(S, T) = 25up|ExscsI[h(X®) # 1] — Exeer I[h(XE) # 1]|
heH
3)

=2sup|l — (Exsesl[b(X®) # 0] + Exeer1[R(XY) # 1))
heH

domain confusion term §

where [[-] is the indicator function. And the domain confusion &
always ranges from 0 to 1 if hypothesis h is properly trained. There-
fore, the domain discrepancy tends to be smaller when domain con-
fusion ¢ is larger.

Currently, the minimization of domain confusion based dis-
tance is always realized by domain adversarial training [12,29-
31]. The architecture ADDA proposed by Tzeng et al. [29,30] trains
a domain classifier to minimize the ¢ in Eq. (3) as well as training a
feature extractor to generate the features confusing the domain
classifier. After such adversarial training, the transfer neural net-
work could simultaneously optimize the domain shift dy(S,7T)
and transfer the knowledge between tasks. DANN [12] uses a
reversal layer which contradicts the gradients of domain classifica-
tion loss and thus simplifies the domain adversarial training. CDAN
[32] further jointly takes the domain-specific features as well as
class-specific predictions as input to conditional domain discrimi-
nator for adaptation. Unlike DANN, ADDA and CDAN optimize the

domain confusion based distance through constructing an assis-
tant domain classifier, recently, MCD [31] introduces a novel para-
digm of adversarial domain adaptation which alternately
maximizes two classifiers’ discrepancy and then minimizes it by
updating the shared feature extractor. Moreover, the methods like
GTA [33] and CyCADA [34] even incorporates AC-GAN [35] and
Cycle-GAN [4] respectively in hope of realizing domain confusion
along with generating fake high-fidelity images. Though such kind
of methods are impressive for excellent performance in simple
transfer tasks, it might be vulnerable for slightly tougher problems
and hard to train and converge because of the addition of strict
constraints. Generally, H-divergence is easily used and performs
very well in the transfer tasks especially with small domain shift,
but severely depends on the balanced training between two adver-
sarial networks.

3. Proposed approach

In this section, we will first analyze the difference between two
aforementioned domain discrepancy representations, and then eli-
cit the motivation of using hybrid representations in domain adap-
tation which could integrate the advantages of MMD and -
divergence. Next, a transfer network architecture based on both
MMD and H-divergence, and the corresponding training proce-
dures are introduced, as shown in Fig. 2. The proposed approach
is simple and yet could perform very well in various kinds of trans-
fer problems, where individual MMD or H-divergence based
domain adaptation method is hard to achieve.

3.1. Overall idea of using hybrid representations in domain adaptation

Without ambiguity, we denote the source image x* as well as its
label y* drawn from source domain S = {X*,Y*} and the unlabeled

target image X' drawn from target domain 7 = X*. Then we use a
feature extractor F to take x* and x* as inputs and generate the cor-
responding features F(x®) and F(x') which are assumed in feature
space X. Next, two classifiers, namely the task classifier G. and
domain classifier G4, are employed for fulfilling the main task clas-
sification and domain classification respectively. Provided the
labeled source domain S and unlabeled target domain 7, our final
goal is to learn the feature extractor F and task classifier G, which
can correctly predict the label y* for any input target image xt.
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Fig. 2. Proposed transfer neural network architecture with hybrid representations of domain discrepancy. The feature extractor takes both the labeled and unlabeled images
as input and outputs the deep features of source and target domains respectively. Then in the first aspect, the deep feature from source domain flows into the task classifier
and results in the task classification loss; Secondly, the MMD based domain adaptation is applied over the extracted features, which produces the MMD loss; Thirdly, the
domain classifier generates the domain classification loss by discriminating the domains of deep features, which can be used for realizing another type of domain adaptation
that is based on H-divergence. Via joint loss optimization and alternate adversarial training between domain classifier and feature extractor, the neural network is able to
establish the transfer process as well as strengthen the transfer ability under hybrid metrics.

Currently, most of transfer neural networks are based on either
MMD or H-divergence. The essence of MMD is to pull the mean of
source and target features to be closer in RKHS and thus reaching
the purpose of aligning two marginal distributions P(F(x%)) and
P(F(x')). Due to the similarity of images in the same class between
S and 7, the conditional distributions P(y|x%) and P(y|x*) would
attract mutually and also be pulled closer to some extent under
the optimization of the overall mean discrepancy of two domains.
For H-divergence based transfer networks, as indicated in Eq. (3), it
always trains an assistant domain classifier G4 to distinguish which
domain the extracted feature F(x) belongs to, which can be
regarded as trying to approximate the H-divergence. Meanwhile,
it trains F to generate the undistinguishable features to confuse
Gy as much as possible, which can be regarded as optimizing H-
divergence. After such an adversarial training between G; and F,
the P(z|x%) and P(z|x") (z is the domain prediction of G,) are aligned
and converge towards P(z|x®) = P(z|x!) = [0.5,0.5]" if maximum
confusion is acquired.

In fact, MMD and H-divergence are from two different perspec-
tives to represent the domain discrepancy. MMD starts from the
mean value aspect while H-divergence is from the domain confu-
sion aspect, resulting in that the domain adaptation based on each
of them has its advantages. MMD based approach could force to
reduce the mean distance between source and target domains
and thus well align the two distributions despite that they have
relatively large discrepancy, but not necessary to achieve excellent
domain confusion like #-divergence based one. On the contrary,
‘H-divergence based method could make the features of two
domains to be mixed adequately and deal very well with the trans-
fer tasks especially with small-scale difficulty, but it also could not
guarantee the mean deviation between source and target domains
to be diminished and thus the domain-level confusion would be
insufficient and even hard to handle the case when domain shift
hugely grows. Empirically, neither MMD nor H-divergence based
method could keep superior performance than each other across
all different transfer tasks. Therefore, it is significant to develop a
hybrid method in domain adaptation to universally handle various
transfer problems and inherit the advantages of both MMD and
‘H-divergence based approaches. We find that MMD and
‘H-divergence can co-exist and be optimized simultaneously
within a transfer network. And surprisingly, the trained transfer
model with the hybrid representations of domain discrepancy

could combine both strengths, enhance the transfer ability and
show extraordinary learning performance in various tasks.

3.2. Transfer network architecture and training steps

In order to concretize the hybrid method in domain adaptation,
we provide a neural network exemplar as shown in Fig. 2. Consid-
ering that ResNet [36] can avoid vanishing gradient and sufficiently
learn the features, we adopt ResNet34 as the default backbone of
feature extractor F. And we use fully connected linear layers to
construct the main task classifier G. and domain classifier Gg.
Assumed that the network’s each two-stream input batches from
source domain S and target domain 7 are B® and B' respectively.
Therefore, we could acquire the extracted features F(B®) and
F(B") by feeding the B® and B* to F simultaneously. Then we train
G, merely with the labels of source images since the labels of target
images are absent. The loss function of the main classification task
can be formulated as

ECIS (Hfa BC) = 7[E(xs_ys)N(XS‘YS) 1 [yS} 10gp(.Y|xs) (4)

where 6y and 0. is the model parameters of F and G, and p(y|x®) is
the C-dimensional probability output of G, using softmax function.
1[i] is the identity vector where i-th entry is 1. In order to transfer
the knowledge from source domain to target domain and align
the features of two domains, firstly, we apply the MMD based
domain adaptation over feature space X, which accords with the
empirical risk minimization. Thus we have the MMD loss function
Ly (0F) = MMD? = [|Exs € BSG(F(X5)) — Exe € B‘(;S(F(X‘))H2
2

w7 D SF(X)) — g D H(F(xT))

xScB® xteB!
S ) e S )

— B > k(F(xf),F(x}))

xiseBs,xj?eB‘
(3)

where |B°| is the batch size and k is Gaussian kernel function. In
order to mitigate the risk of selecting inappropriate kernel function
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k, the weighted kernel functions are adopted, namely
((1), ¢(-)y = > Buku(-, ) where > 8, =1 and g, > 0. In addition,
we also feed the extracted feature F(x) to domain classifier G; which
will result in two-dimensional probability p(z|x) for the judgement
of whether source domain or target domain it belongs to. The
domain classification loss function can be written as

Lq(0f,04) = —Exsxs1[2°] log p(z|X°) — Exe x1[2] log p(z|x") (6)

where 6, is model parameters of G4 and z is the domain prediction
of G4 given image X. z° is domain label of source image x® and equal
to 0 and analogously, z¢ is equal to 1.

Based on the above three loss functions L5, Lyvp, and L4, we
are able to train the transfer neural network by optimizing the
joint loss functions in adversarial fashion. At each iteration, we will
first fix the parameters of domain classifier G4, namely 6,, and opti-
mize the 0r and 0, by jointly minimizing L5 + A(Lmmp — £4). Then
alternately, we freeze the parameters of feature extractor F and
main task classifier G., namely 6; and 6., and optimize 6, by mini-
mizing the domain classification loss function iéL4. The whole
adversarial training process can be formulated as

l9f7 0. = arg min L (Of, 05) + 1 (LMM[) (Qf) — &Ly <9f, éd))
05.0c
04 = arg min AELY (éf, Hd)
0q

(7)

where / is the tradeoff between the supervised classification loss
Lqs and the summation loss of Lywp and £4 which aims for domain
adaptation. We fix 1 =1 throughout our paper. ¢ is the weight
between MMD and ‘H-divergence and is also set to be 1 as regarding
both metrics have equal importance.

The hybrid method in domain adaptation, as demonstrated
above, integrates both MMD and H-divergence based domain
adaptations to the network simultaneously, which would be much
helpful to exert the advantages of two metrics and improve the
adaptability to various transfer problems.

4. Experiments

In this section, we test our method in four types of datasets to
demonstrate that the transfer neural network with hybrid adapta-
tions could combine and even strengthen the advantages of MMD
and H-divergence based domain adaptation networks. Moreover,
we visualize the learned features and the distribution alignment
between source and target domains, the results of which further
ensure the effectiveness of the proposed method.

4.1. Experiment setup

4.1.1. Evaluation metrics

In order to quantitatively evaluate the performance of transfer
networks, we use average precision (AP) and classification accu-
racy as evaluation metrics. The definition of AP and classification
accuracy are

AP = "(Ry — Ry_1)Py
" (8)

N 1yt
Accuracy = 721':1%“" v

where R, and P, are the recall and precision at the n-th threshold,
respectively. N is total number of test images in target domain
and the indicator function I[y; = v{] is 1 if the prediction y; equals
to the ground truth y; otherwise I[y; = y!] = 0.

4.1.2. Compared methods

For simplicity, we abbreviate the proposed transfer neural net-
work using hybrid representations of domain discrepancy as TNN-
Hybrid. Firstly, four baselines: Source Only I, Source Only II, TNN-
MMD, and TNN-H are provided for ablation study. Except Source
Only I which is based on AlexNet, the rest three share the same
backbone ResNet34 with TNN-Hybrid. Source Only I and II is
merely trained with source data and without any adaptation;
TNN-MMD uses only MMD for domain adaptation; and TNN-H
uses ‘H-divergence for adaptation. Secondly, the popular MMD
based transfer learning networks, e.g. DDC [23], DAN [25] and
JAN [26], and the H-divergence based methods such as DANN
[12], ADDA [30], MCD [31] and GTA [33] are also adopted for com-
parison in experiments.

4.1.3. Implementation details

There are four different types of datasets employed throughout
our experiments: 1) Workpiece dataset; 2) Handwritten digit data-
sets [10-13]; 3) Office-Caltech 10 dataset [14]| and 4) ImageNet
based dataset [6]. Due to the resolution of the handwritten image
is limited and thus could not use very deep feature extractor, we
adopt the relative shallow CNN architectures which are previously
used in [12,31] and modify the network by adding batch normal-
ization and dropout after each layer. For the remaining datasets,
we use the proposed architecture (see Fig. 2), in which the param-
eters of employed ResNet34 are pre-trained on ImageNet, and the
last pooling layer is replaced by adaptive average pooling in order
to get the feature map with fixed size 8 x 8. A fully-connected layer
with Sigmoid activation function is inserted behind the feature
extractor as adaptation layer which is initialized with the normal
distribution of mean u = 0 and standard deviation ¢ = 0.5. In addi-
tion, the domain classifier of proposed architecture has one hidden
layer with 512 ReLU activation units [37]. For the MMD computa-
tion, four Gaussian kernel functions with standard deviation of
o =2,4,8,16 are used. All the networks leverage SGD algorithm
with a learning rate of 0.001 and momentum of 0.9 for optimiza-
tion except the handwritten digit transfer tasks which use Adam
algorithm [38].

4.2. Experiments on workpiece dataset

In order to investigate the feasibility of applying transfer neural
networks to industry for object viewpoint estimation, we build a
workpiece dataset upon eight different workpieces and each type
of workpieces contains 8610 synthetic images and 840 real images.
It should note that we convert and degrade the classic pose estima-
tion problem into the image classification problem in this experi-
ment. As shown in Fig. 3, firstly, the eight different workpiece
models are designed in the CAD software 3Ds-Max. Then, we
define the main axis of each workpiece and make it point to each
node of the viewpoint sphere which is discretized by the latitudes
at the step of 45° and longitudes at the step of 90°. For simplicity,
only seven blue nodes of the viewpoint sphere in Fig. 3 are
selected. Thus the synthetic workpiece images with seven different
viewpoints can be generated by rendering the CAD workpiece
model with a fixed camera in the virtual environment. In order
to augment the number of workpiece images, the main axis of
workpiece randomly points the adjacency of each node and rotates
the workpiece around itself. Given one node, all the rendered
images are categorized as a viewpoint class, for example, as
revealed by the synthetic images of workpiece one (WP1) at each
row in Fig. 3. Finally, we fabricate the real workpieces using 3D
printing technology and capture the real workpiece images analo-
gously. In order to challenge the capability of transfer networks,
the real images are collected under more complex backgrounds
and illuminations, which lays the hurdle to transfer the knowledge



C. Lu et al./Neurocomputing 409 (2020) 60-73 65

8 Workpieces

¢ a

IIEEEEEEEE

SRV A

Y 900
—®  Main Axis
® () Self-rotation
270°
> ® 180°

DNRNDNNONn

Synthetic Images of WP1

Real Images of WP1

Fig. 3. Synthetic-real workpiece dataset generation and image exemplars of workpiece one (WP1). Eight different CAD workpiece models shown on the top left are leveraged
to build the workpiece images. Each workpiece model is placed in the center of a viewpoint sphere (top right), pointing its main axis to each node of sphere and thus being
rendered under simple pure color background by a fixed camera in virtual environment, where the WP1’s synthetic images with seven different pose categories are shown on
the bottom left (and the images with slight pose variations at each row belonging to a common viewpoint class). The real workpiece image generation follows the same
configurations with the synthetic images except for establishing the whole process in a real-world environment and with three backgrounds: blue tablecloth, brown

envelope, and book. The part real images of WP1 are shown on the bottom right.

from synthetic workpiece images to real images. Though the huge
domain gap in this experiment, we use the entire labeled synthetic
images and unlabeled real images to train all the compared mod-
els, and evaluate on the training set of target domain. The detailed
classification results across seven different viewpoints on WP1
compared to baselines and popular transfer network architectures
are shown in Table 2. The top three scores regarding average preci-
sion (AP) and accuracy across all compared methods are stressed in
boldface. Among MMD distance based methods, JAN [26] is based
on ResNet50 while DDC [23] and DAN [25] are on top of AlexNet.
From Table 2, it can observe that they can achieve higher scores
to some extent than the backbone-sharing network Source Only
I (based on ResNet34) and Source Only I (based on AlexNet)
respectively, which demonstrates that transfer learning can effec-
tively alleviate the domain discrepancy. Among JAN, DAN and
DDC, the reason that JAN could perform better comprehensively
than DDC and DAN may be due to the different adoptions of feature
extractor and MMD adaptation strategy. In H-divergence based
methods, MCD [31] uses ResNet34 as backbone and DANN employs
AlexNet. Apparently in Table 2, MCD [31] performs much better
than DANN [12] and TNN-H and gains much in average accuracy
compared to Source Only II, which leads to 76.7%. The reason
behind this may be due to that MCD aligns the distributions of
source and target by utilizing two task-specific classifiers, which
is effective for this task. However, when comparing to TNN-MMD
and JAN, MCD shows little advantage and exhibits large margin
no matter in accuracy or AP to TNN-MMD. Actually, in front of
the large difference of appearance between synthetic and real
workpiece images, H-divergence based method would be hard to

handle such domain shift and align the class-specific distribution
between source and target domains.

Comparing the transfer performance among TNN-#+, TNN-MMD
and TNN-Hybrid, we can see that TNN-Hybrid could well inherit
the high scores of TNN-MMD and avoid the influence of unsatisfac-
tory transfer results of TNN-#H. Moreover, TNN-Hybrid is able to
boost the performance in many viewpoint classes and achieves
the second best overall accuracy of 88.7% in WP1, as shown in
Table 2 (The best score is also held by our TNN-Hybrid-
ResNet50). It should note that, although #-divergence based adap-
tation does not effect as leading role in this transfer task, it still
could increase the domain confusion and thus help to improve net-
work’s transfer ability. As aforementioned, both MMD and -
divergence representations have their own strengths and yet
reserves, the proposed TNN-Hybrid aims to adopt both advantages
and exerts its best competence for transfer learning, which will be
also reflected in subsequent extensive experiments.

For comprehensively testing the performance of compared
transfer networks for viewpoint estimation, we implement all
transfer tasks on the synthetic-real workpiece dataset from WP1
to WP8 and the quantitative results are shown in Table 3. The accu-
racy scores achieved by Source Only I and II from WP2 to WP7 are
much smaller than those in WP1 and WP8, which indicates that
the transfer tasks in WP2 to WP7 are very difficult. Nevertheless,
the proposed TNN-Hybrid could still perform effectively and gain
the mean average precision (mAP) and mean accuracy (mAcc)
across all viewpoint categories vastly in eight workpieces com-
pared to the Source Only II baseline. Again, TNN-Hybrid follows
the advances of TNN-MMD in most of the workpieces except some
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Table 2
Results of average precision (AP) and accuracy (Acc) of workpiece one (WP1) in seven pose classes. The last column is the mean of AP and Acc. Top three scores are in boldface.
Method Metrics (90°,0°) (45°,90°) (45°,270°) (0°,0°) (0°,90°) (0°,180°) (0°,270°) Avg.
Source Only I AP 84.1 73.6 79.0 67.8 50.3 62.5 45.6 60.7
Acc 65.8 57.5 55.8 325 64.2 90.0 60.0 60.8
Source Only II AP 65.6 55.8 734 94.5 60.4 90.2 60.0 70.2
Acc 45.0 25.0 61.7 95.8 60.0 77.5 60.0 60.7
DDC [23] AP 83.3 80.2 81.1 82.7 57.2 79.7 39.2 67.3
Acc 70.0 59.2 61.7 533 733 86.6 54.2 65.5
DAN [25] AP 98.9 46.1 30.5 98.5 42.2 90.9 43.4 64.0
Acc 88.3 53.3 22.5 76.7 45.8 95.8 30.0 58.9
JAN [26] AP 100.0 61.2 56.3 99.9 66.8 99.9 44.7 76.4
Acc 100.0 62.5 36.7 100.0 55.0 100.0 45.8 71.4
DANN [12] AP 75.2 63.8 65.9 51.5 48.9 76.2 441 57.6
Acc 59.2 47.5 56.7 433 52.5 93.3 46.7 57.0
MCD [31] AP 100.0 100.0 99.8 28.6 60.3 55.5 60.5 70.1
Acc 100.0 100.0 99.2 21.7 60.0 85.8 70.0 76.7
TNN-MMD AP 99.9 93.8 95.1 99.9 78.3 99.6 79.8 94.8
Acc 97.5 81.7 925 100.0 67.5 97.5 71.7 86.9
TNN-H AP 48.6 25.7 47.8 94.5 20.7 84.8 46.4 55.5
Acc 58.3 14.2 41.7 90.0 14.2 80.8 51.7 50.1
TNN-Hybrid AP 99.7 97.7 99.8 99.8 733 99.7 76.1 94.4
Acc 99.7 86.7 97.5 99.2 67.5 99.2 74.2 88.7
TNN-Hybrid-AlexNet AP 97.3 78.6 78.6 59.9 62.7 53.6 55.2 67.7
Acc 93.9 70.8 77.5 61.2 64.2 61.7 60.8 70.0
TNN-Hybrid-ResNet50 AP 99.8 96.9 99.9 99.8 81.3 99.8 81.7 971
Acc 97.5 90.0 99.2 99.2 68.3 99.1 80.0 90.5
Table 3
Results of mean average precision (mAP) and mean accuracy (mAcc) across all pose classes from workpiece one (WP1) to workpiece eight (WP8). Top three scores are in boldface.
Method Metrics WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8
Source Only I mAP 60.7 48.1 47.3 44.0 56.9 53.8 46.0 70.8
mAcc 60.8 48.9 47.8 49.2 56.4 53.0 44.9 67.7
Source Only II mAP 70.2 22.2 32.2 31.7 36.8 44.6 27.7 61.4
mAcc 60.7 243 339 30.7 36.9 421 29.5 50.8
DDC [23] mAP 67.3 51.0 45.0 49.0 58.5 58.5 45.4 73.0
mAcc 65.5 52.7 50.0 47.3 57.2 60.6 54.3 75.3
DAN [25] mAP 64.0 54.1 48.3 40.1 70.3 66.0 65.7 51.0
mAcc 58.9 48.9 41.8 374 61.4 54.4 59.9 334
JAN [26] mAP 76.4 53.5 57.7 58.6 79.6 65.1 77.8 62.7
mAcc 71.4 43.2 45.1 52.5 69.2 61.6 56.3 43.7
DANN [12] mAP 57.6 345 40.6 41.2 53.3 48.0 44.5 69.0
mAcc 57.0 384 43.0 414 53.5 471 46.3 64.6
MCD [31] mAP 70.0 324 61.2 375 53.8 61.5 313 97.7
mAcc 76.7 46.3 63.0 44.4 63.9 61.4 349 91.3
TNN-MMD mAP 94.8 59.3 53.8 825 53.5 54.1 49.2 99.3
mAcc 86.9 574 58.9 72.8 52.1 60.5 49.7 97.4
TNN-H mAP 55.5 26.2 333 31.9 30.5 30.7 36.1 50.5
mAcc 50.1 30.7 31.1 30.8 29.5 309 32.6 52.0
TNN-Hybrid mAP 94.4 69.4 57.2 70.4 65.9 65.2 62.9 98.4
mAcc 88.7 68.3 63.5 63.9 60.5 65.9 59.5 95.6
TNN-Hybrid-AlexNet mAP 67.7 43.6 42.9 48.3 49.6 58.2 48.1 78.3
mAcc 70.0 52.1 474 51.7 59.2 64.3 50.1 731
TNN-Hybrid-ResNet50 mAP 971 88.2 79.0 61.6 65.9 84.9 75.7 98.9
mAcc 90.5 78.6 81.5 57.9 711 83.2 76.9 95.6

drops in WP8 and WP4. From the Table 3, it is straightforward that
the proposed TNN-Hybrid is very suitable to deal with the transfer
tasks in workpiece dataset and could harmoniously integrate MMD
and H-divergence within a common architecture.

Besides the ablation experiments for studying the effect of
whether or not using hybrid representations, we also investigate
the influence of different backbone settings to our method. As indi-
cated in Table 2 and Talbe 3, we can see that our ResNet50 version
of TNN-Hybrid holds most of best accuracy scores as well as AP and
outperforms TNN-Hybrid which is on the basis of ResNet34. How-
ever, if we use AlexNet as backbone, though it could conduct better

than Source Only I, the performance is quite restricted. Thus the
appropriate network settings are also quite important. Therefore,
we provide two types of Source Only baselines for conveniently
comparing different transfer methods throughout the whole
experiments.

4.3. Experiments on handwritten digit dataset
In this experiment, we evaluate the transfer neural network

with hybrid representations on the entire and standard public
handwritten digit datasets: MNIST [10], USPS [11], MNIST-M [12]
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and Street View House Numbers (SVHN) [13]. The image samples
of four handwritten digit datasets are displayed in Fig. 1 and there
clearly exists discrepancy among four domains. We adopt four fre-
quently employed transfer tasks in this experiment, namely MNIST
to MNIST-M, USPS to MNIST, SVHN to MNIST and MNIST to USPS,
where the former dataset is as source domain and the latter is as
target domain. The results of handwritten digit recognition with
various transfer networks are illustrated in Table 4. Recall that
DANN [12], ADDA [30], TNN-%, GTA [33] and MCD [31] are all
based on H-divergence representation. As we can see, H-
divergence based methods perform quite well for the transfer tasks
in handwritten digit datasets and reveal stronger transfer ability
than MMD based method. For instance, TNN-H outperforms
TNN-MMD in four handwritten digit recognition transfer tasks,
as shown in Table 4. It also could observe that TNN-Hybrid holds
the better results than TNN-H and TNN-MMD across all transfer
tasks, which indicates that hybrid method in domain adaptation
can not only successfully incorporate the advantages of H-
divergence based adaptation but also get promoted in the manner
of combining both domain discrepancy representations. Even sur-
prisingly, TNN-Hybrid achieves one best accuracy scores 93.03% in
the task of MNIST to MNIST-M compared to the state-of-the-art
transfer networks MCD and GTA. In fact, it would be difficult for
GTA to align distribution between MNIST and MNIST-M as the tar-
get image owns higher complexity of background and generating
fake high-fidelity images under such situation is with stricter con-
straints and not easy. On the contrary to the experiments over
synthetic-real workpiece dataset in Section 4.2, H-divergence
based adaptation takes over the leading role from MMD based
adaptation, and fortunately it does not affect the proposed method
and TNN-Hybrid could still perform well on the basis of the advan-
tages of two domain adaptation methods.

4.4. Experiments on Office-Caltech 10 and ImageNet based dataset

We further implement extensive experiments on the public
dataset Office-Caltech 10 [14] and the self-built ImageNet based
dataset. Office-Caltech 10 is composed of 10 common categories
from Office-31 dataset [39] and Caltech-256 dataset [40]. There
are totally 2533 images in Office-Caltech 10 dataset and four
domains which can be called as Amazon (A), Webcam (W), DSLR
(D) and Caltech (C). The images in Amazon domain are down-
loaded from the website of amazon.com while the images in Web-
cam and DSLR are captured by a low-resolution web camera and
high-resolution digital SLR camera in office environment respec-
tively. The corresponding image samples of four domains in
Office-Caltech 10 are shown in Fig. 1. Given that Office-Caltech
10 is commonly adopted by many transfer learning methods for
comparison, therefore, we build eight transfer tasks in experiment,
which are A~-WA—-DA—-CD—-WW-DC—-AC—-W
and C — D. The experimental results on Office-Caltech 10 are as
shown in Table 5. Firstly, it is straightforward that the transfer neu-
ral networks TNN-MMD and TNN-H achieve similar accuracy
scores across eight transfer tasks in Office-Caltech 10, which
reveals the approximately equal transfer capability in this dataset
between MMD and #-divergence based adaptation methods. Sec-
ondly, we can see that the proposed TNN-Hybrid could also hold
excellent performance in Office-Caltech 10 and keep pace with
TNN-MMD and TNN-H. The obtained accuracy scores by TNN-
Hybrid are quite balanced and even the worst performance can
reach 87.4% (see the transfer task of A — C). Thirdly, compared
to other popular transfer methods listed in Table 5, TNN-Hybrid
is very competitive and can achieve 3/8 best accuracy scores in
Office-Caltech 10, which evidently demonstrates its effectiveness.
Moreover, compared to TNN-Hybrid, our TNN-Hybrid-ResNet50

reveals higher transfer potential, which accords to the results
achieved in Section 4.2.

In order to demonstrate that two domain discrepancy represen-
tations, namely MMD distance and H-divergence, could be opti-
mized together within our architecture, we use the first transfer
task A — W on Office-Caltech 10 as an example and draw the
curves of training losses and task classification accuracy, as shown
in Fig. 4. It can observe that the task classification loss, MMD loss
and domain classification loss could be simultaneously optimized
and at the meantime, the accuracy gets promoted, which verifies
the effectiveness of proposed method. Notably, the domain classi-
fication loss curve converges to 1.386 which is the theoretical
value of adversarial balance between domain classifier G4 and fea-
ture extractor F when maximum confusion achieves.

In fact, Office-Caltech 10 is a quite small-scale dataset whose
number of images per category averages 63.3 and is with a maxi-
mum of 151 (like “backpack” category in Caltech domain) and a
minimum of 8 (like “mug” in DSLR domain), which will restrain
the transfer performance of deep networks that demand large
amounts of data. In addition, in order to investigate the perfor-
mance of transfer networks beyond same object types, for instance,
the transfer tasks of cat — tiger and dog — wolf, we build a stan-
dard ImageNet based dataset' for future research. The ImageNet
based dataset can be divided into six object types, which are cat,
dog, car, tiger, wolf, and truck respectively, as shown in Fig. 5. More-
over, it consists of 7114 images in total and has an average of 1185
with a minimum of 815 and a maximum of 1552 images per cate-
gory, which are abundant enough for training a deep network. With
ImageNet based dataset, we construct two transfer tasks in our
experiment, namely Task A: {cat,dog,car} — {tiger, wolf, truck}
and Task B: {tiger, wolf, truck} — {cat,dog, car}, and quantitative
results are also shown in Table 5. Although the transfer objects
between the source domain and target domain are different and
the backgrounds are the diverse nature scenes (see Fig. 5), the
knowledge still could be transferred as long as there existing com-
mon characters between two domains. From Table 5, we can learn
that the two tasks in ImageNet based dataset are not difficult as
the high accuracy scores achieved by Source Only I and II. Naturally,
the proposed TNN-Hybrid could yet obtain very competitive results,
especially in Task A which reaches 97.2%. Similar to the experimen-
tal results on Office-Caltech 10, again, TNN-Hybrid could perfectly
integrate both MMD and H-divergence based adaptations and fully
exert their competence.

4.5. Analysis of learned features of transfer neural network

In order to intuitively judge and validate the effectiveness of the
proposed transfer neural network with hybrid method in domain
adaptation, we implement experiments to visualize the distribu-
tion as well as the discriminative area of deep features learned
by the trained transfer model from source and target domains.

4.5.1. Visualizing distribution of learned features

In this experiment, we employ the compared deep transfer
models trained in the dataset of workpiece one (WP1) for visualiz-
ing the distribution of extracted features which are used for
domain adaptation. Since the deep features are high-dimensional,
e.g. 512D in our architecture and 256D in DDC, it is hard to directly
interpret and understand. With the help of useful dimensionality
reduction algorithm t-SNE [41], we are capable of turning the
extracted features into two dimensions and drawing the distribu-
tion of source and target features within graphs, as shown in
Fig. 6. The more distinguishable of each visualized viewpoint cate-

1 https://github.com/AlanLuSun/ImageNet-Based-Dataset-for-Transfer-Learning.
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Table 4

The classification accuracy of different transfer tasks on four handwritten digit datasets MNIST [10], USPS [11], SVHN [13] and MNIST-M [12]. The experiments are conducted with
the entire standard datasets and all methods are with same network backbone protocol as indicated in [12,31]. Notation (1) means the results of the corresponding methods are
cited from published papers.

Method MNIST to USPS USPS to MNIST SVHN to MNIST MNIST to MNIST-M
Source Only 68.9 62.1 65.7 523
DANN' [12] 771 73.0 73.9 76.7
ADDA' [30] 89.4 90.1 76.0 -

GTA [33] 93.6 89.2 89.5 75.3

MCD [31] 93.0 96.4 94.4 74.1
TNN-MMD 79.9 75.1 72.7 52.5

TNN-H 81.9 82.0 77.0 90.0

TNN-Hybrid 89.2 89.3 84.7 93.03

Table 5

The accuracy of various transfer tasks on Office-Caltech 10 dataset and ImageNet based dataset. Top three scores are in boldface.
Method Office-Caltech 10 dataset ImageNet based

Dataset
A—W A—D A—C D—W W—-D C—A C—W Cc—D Task A Task B

Source Only I 73.9 80.3 77.6 86.1 90.4 89.4 72.9 82.2 89.5 79.4
Source Only II 78.6 84.1 79.9 89.8 96.8 88.8 89.2 83.4 92.7 89.1
DDC [23] 81.0 80.9 84.5 91.2 97.5 91.0 79.0 85.4 93.1 82.7
DAN [25] 75.9 85.4 78.8 96.6 98.1 89.9 73.6 771 923 83.4
JAN [26] 959 87.9 874 96.9 95.5 90.5 88.1 88.5 95.7 95.0
DANN [12] 67.8 771 78.7 91.5 98.1 90.4 75.9 82.8 88.2 78.7
GTA [33] 41.7 51.6 50.3 67.1 86.0 67.2 48.1 65.6 73.2 69.3
MCD [31] 88.5 89.2 87.3 98.6 99.3 87.2 87.8 89.1 923 83.1
TNN-MMD 88.5 86.6 86.9 89.8 100.0 94.1 90.5 904 94.5 89.9
TNN-H 80.7 84.7 86.5 88.5 100.0 93.2 90.2 89.2 94.3 89.0
TNN-Hybrid 87.8 89.8 874 89.2 100.0 934 89.5 929 97.2 90.8
TNN-Hybrid-AlexNet 82.0 85.4 84.1 92.2 98.7 91.3 82.7 86.0 92.9 82.6
TNN-Hybrid-ResNet50 94.6 87.9 90.1 98.3 97.5 93.0 90.2 904 96.8 934
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Fig. 4. Example of training loss curves and classification accuracy using TNN-Hybrid-ResNet50 in transfer task A—W on Office-Caltech 10 dataset. (a) MMD loss curve; (b)
domain classification loss curve; (c) task classification loss curve; (d) accuracy curve.
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Fig. 5. An overview of ImageNet based dataset. There are six different object types in total, which can be divided into two domains for studying transfer learning, namely

{cat,dog, car} and {tiger, wolf, truck}.

gory and the better distribution alignment between source and tar-
get features are meaning the higher classification accuracy and
better transfer ability. Firstly, we can see that the target features
of Source Only I and II in Fig. 6a) and Fig. 6(b) are mixed and badly
align with the source features since there is no domain adaptation
applied. Compared with the displayed features of various transfer
methods from Fig. 6(c)-(i), the class boundaries of the proposed
transfer neural network TNN-Hybrid are very clear and the clusters
of each category are much compact, which highlights the excellent
transfer performance achieved by TNN-Hybrid. Secondly, the fea-
ture alignment of TNN-MMD is much better than that of TNN-#
as Fig. 6i) and Fig. 6(h) show, which implies MMD based domain
adaptation is more suitable than #-divergence based one regard-
ing the transfer task in workpiece dataset. In addition, we also
can find that the feature distribution plot of TNN-Hybrid is similar
to that of TNN-MMD but performs better in overall compactness
and alignment, which illustrates that the hybrid adaptations could
exert better on the basis of MMD based domain adaptation. Admit-
tedly, the above analysis fully accords with the aforementioned
numerical results on WP1. Thirdly, from Fig. 6(k) and (1), the fea-
tures from source domain are much more distinguishable than
the features from target domain although after domain adaptation,
which is extremely sensible because the deep transfer model is
supervised under labeled source images and unlabeled target
images. Overall, the distribution plots of source and target features
in Fig. 6 are quite straightforward, vivid and helpful, which evi-
dently demonstrates the effectiveness of the proposed method.

4.5.2. Interpreting learned deep features

Although the deep neural network has always been considered
as a black box, many valuable works are trying to unveil what fea-
tures the deep model has learned. For example, Grad-CAM [42] and

CAM [43] are two well-known as well as convenient methods for
producing the coarse discriminative area which implicitly reflects
the attention of the trained convolutional neural networks. In this
experiment, we use the Grad-CAM [42] to visualize the discrimina-
tive area of the feature map generated by the last pooling layer of
ResNet-34 based feature extractor in our architecture. The exam-
ples of the discriminative area learned by the proposed transfer
model TNN-Hybrid across eight workpieces are shown in Fig. 7.
As we can see, the highlighted area in synthetic images is within
or near the workpiece objects despite the TNN-Hybrid are trained
under image level labels. Actually, the deep model could learn the
common spatial characteristics in the images that belong to the
same class and then focus on the critical area for prediction. Nota-
bly, the backgrounds of real workpiece images are much more
complicated than synthetic ones and TNN-Hybrid are trained with-
out labels of real images. Even so, the visualized discriminative
area of the proposed TNN-Hybrid could successfully highlight the
workpiece objects in real images, which indicates the transfer
model has learned the common features between the source
domain and target domain and is equipped with the transfer ability
to some extent. In addition, we also visualize the discriminative
area of the feature maps on ImageNet based dataset, as shown in
Fig. 8. The visualization results of Fig. 8(a) and (b) are produced
by using the deep model TNN-Hybrid trained in transfer Task B
and Task A respectively. Thus, the image groups of Fig. 8(a) and
(b) are both belonging to target domains. Again, we can see that
the TNN-Hybrid trained in two opposite transfer tasks could learn
the similar features, e.g. the textures between cat and tiger, and
focus on the class-related area, which demonstrates the proposed
transfer neural network with hybrid method in domain adaptation
could effectively transfer the information from the source domain
to target domain.
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Fig. 6. Visualization of distribution for extracted deep features from synthetic images (source domain) and real images (target domain) of workpiece one by using t-SNE [41].
The source and target features are marked by color dots (-) and crosses ( x ) respectively, where each color represents a viewpoint class of workpiece as indicated in the color
bar. (a) to (j) are the plots of feature distribution alignment with different deep transfer networks and drawing the source and target features simultaneously. In order to
further observe the distribution difference of learned features between the source domain and target domain, the source and target features extracted by TNN-Hybrid are also
separately shown. in (k) and (1).
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Fig. 7. Visualization of the discriminative area where the proposed transfer neural network model TNN-Hybrid focuses. The eight synthetic and real workpiece images along
with the heat map which indicates the focused area of deep transfer model are displayed at each indexed row.
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Fig. 8. Visualizing the discriminative area of learned features on ImageNet based dataset by TNN-Hybrid. The heat maps of (a) are generated by using the transfer model
trained in Task B, namely transferring from {tiger, wolf, truck} to {cat, dog,car}, while the heat maps of (b) are produced on the contrary.

5. Conclusion

The two well-known domain discrepancy representations, as
well as the derived deep transfer networks, are detailedly dis-
cussed in this paper. Based on that, we propose hybrid method in
domain adaptation and corresponding transfer neural network
architecture, which can fully excavate the potentials of different
methods and exert their best competence within a common net-
work. Moreover, the proposed method shows strong universality
and is very convenient to be employed. The achieved competitive
results across all different transfer tasks either simple or difficult
demonstrate that the method using hybrid representations of
domain discrepancy could well incorporate the advantages of both
MMD and H-divergence based adaptations and even strengthen
the network’s transfer ability. In the future, we will study the
hybrid approaches to further improving the transfer performance
with semi-supervised training by adding a few labels from the tar-
get domain and integrating more other novel domain adaptation
methods.
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