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A. Summary of Methodology
A.1 Architecture Overview
The goal of few-shot keypoint detection (FSKD) is to predict
the corresponding keypoints in query image given the sup-
port image & support keypoints. Via such setting, the FSKD
model becomes very general and being able to detect arbi-
trary kinds of keypoints as long as providing the supports.

The overview of our lightweight FSKD model is shown
in Fig. 1. As we can see, our model is comprised of five
components for keypoint inference, which are weight-shared
encoder F , keypoint feature aggregator A, non-linear ker-
nel generator (KG) Π, non-parametric detection module D,
and upsampling modules U . Each module is meticulously
designed to endow the model to be lightweight while ex-
tremely efficient. In training stage, the mean feature based
contrastive learning (MFCL) is applied as a regularization
loss, to enforce the feature learning and align the keypoint
representation distributions.

We instantiate the non-linear kernel generator (KG) as
space-channel disentangled refinement network, as shown
in Fig. 1(b). The non-linear KG is responsible to map the
support keypoint prototype (SKP) into multi-group kernels
with diverse resolutions, which aims to improve correlation
window during simultaneous modulation and detection. The
SRM and CRM in Fig. 1(b) refers to space refinement mod-
ule (SRM) and channel refinement module (CRM), respec-
tively. Via this disentangled way of generating kernels, our
model could save parameters and achieve high-efficiency.
From the Table 1 (in main paper), we can observe that
the model parameters for generating kernels with resolution
S = {1, 3, 5} are similar, only consuming 27.5M, 27.6M
and 27.6M, which manifests the effective design of non-
linear KG.

A.2 Improving FSKD by Contrasting Keypoints
To encourage our lightweight FSKD model to learn rep-
resentative keypoint representations, we propose to equip
our model with mean feature based contrastive learning
(MFCL). Even though we discovered that the MFCL could
help reach higher performance, we try to investigate and un-
derstand following questions:
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Q1: Why mean feature based contrastive learning is im-
portant for FSKD? Foremost, contrastive learning (CL) can
help align the distribution of same type of keypoint features
across difference species. By introducing the CL loss, the
model is not only learning towards the goal of class-agnostic
keypoint localization, but also takes care of feature represen-
tation learning and encourages better manifold. This is the
benefit of CL. However, when applying CL to the task of
few-shot learning, one major concern is the limited number
of support samples, which would cause instance-level key-
point features to be noisy and less representative, thus being
sub-optimal for contrastive learning. Instead, using the mean
feature over an episode, and then performing CL in episode
level will benefit FSKD as mean keypoint features are more
representative and more stable than instance-level features.
Q2: How to control hardness of negative keypoints for con-
trastive learning? Why we can control? The hardness of
negative keypoints can be tuned by setting (α, ρ,Nneg), as
shown in Fig. 2. If the bounding box scale α is small, then
bounding box shrinks towards the center of object, which
would lead bounding box falling more on the foreground.
Then sampling negatives within bounding box would lead
most of the negatives coming from object foreground region,
thus increasing the hardness. If setting α to big, bounding
box becomes larger and more background region is incor-
porated, thus lowering the hardness, as background usually
is regarded as the source coming easy negatives. For dis-
tance threshold ρ, it is easy to understand that if ρ is small,
then negative keypoints are closer to anchors, thus increas-
ing the hardness. If ρ is big, vice versa. The Nneg controls
the number of negative keypoints sampled from bounding
box. Obviously, it controls density. By setting appropriate
(α, ρ,Nneg), it would boost performance with MFCL, as
shown in Table 4 (ablation study in main paper).

A.3 Proposition 1 & Proof
The goal of Proposition 1 is to give an insight that our
simultaneous modulation and detection (SMD) has poten-
tial to achieve equal feature modeling ability compared to
modulation-detection separate (MDS) design. It indicates
our model may not lose performance even if combining
modulation and detection into one step for lightweight.
Since neural network is non-linear yet complex, it is very
hard to analyze its properties inside the black box. However,



Support image 

& keypoints

Query image

Aggregation 

& Avg

Output

N SKPs

Non-Linear 

KG

Non-parametric 

Detection

Encoder

(a) Lightweight FSKD Model

N Kernels

Upsampling & 

Fusing

N Kernels

Fused Heatmaps

Multi-group 

Kernels
D

eco
n

v

D
eco

n
v

Conv Blk

Id
en

tity

SRM

Conv Blk

1×1

CRM

(b) Non-linear Kernel Generator

One SKP

G1-th kernel GS-th kernel

3×3 S×S
1×1 S×S

1GW SGW

1GH

SGH
Query feature

Support feature

Inject

Figure 1: The pipeline of proposed lightweight few-shot keypoint detection. Our model takes both support prompts and query
image as input, and outputs the predicted keypoints for query image. The support keypoints are used to aggregate the keypoint
features and build support keypoint prototypes (SKPs). Via the non-linear kernel generator (KG), the SKPs are refined and con-
verted into multi-group kernels which will be injected into detection module for simultaneous modulation and detection (SMD).
The non-linear KG includes SRM and CRM which are responsible to refine the space and channel of the generated kernels,
respectively. The design of our model could significantly reduce the memory consumption while keeping FSKD performance.
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Figure 2: Examples of negative keypoints control. White cir-
cles are negative keypoints while red ones are anchors. (a)
Bounding box scale ranging in 0.8, 1.15, 1.5, 2.0; (b) Dis-
tance threshold ranging in 10, 30, 40, 60 pixels; (c) Num-
ber of negative keypoints ranging in 5, 10, 20, 30. We can
clearly see that the hardness are controlled by bounding box
scale and distance threshold, while the density is controlled
by number of keypoints.

one can use Taylor expansion to probe its properties by fo-
cusing on tiny intervals at some points, e.g. the works (Bal-
duzzi, McWilliams, and Butler-Yeoman 2017; Alain and
Bengio 2014), which use first-order or second-order Taylor
approximation. Analogously, we give the proof as follows.

Proof. Recall that the formulation of softplus is ϕ(x) =
1
T ln(1 + eTx) (i.e., soft ReLU) which is continuously dif-
ferentiable and approximates ReLU with arbitrary precision

based on temperature T . By using Taylor expansion, one can
rewrite the difference between Hf and Hg as follows
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For soft ReLU at ε = 0 and T→∞, the first-order
derivative equals 0.5, and first-order Taylor expansion holds.
Moreover, when expanding at ε > 0 for T →∞, then
ϕ(ε) = ε, ϕ(ε)′ = 1, and n-th order derivative ϕ(ε)(n) = 0
(n ≥ 2). The high-order Taylor expansion holds.

Remark: Our SMD design can approximate MDS closely,
and can correlate support keypoint prototype a with query
feature X via Wsmd, which benefits keypoint location in-
ference. We also conduct a toy experiment to observe the
heatmap difference (i.e., ∥Hf−Hg∥2) when respectively fit-
ting SMD and MDS networks to randomly sampled heatmap
given same inputs (1000 trials). Fig. 3 shows that the dif-
ference of heatmaps dramatically reduces and limits to zero
over a few optimization iterations, which shows that SMD
can approximate MDS well.
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Figure 3: Toy experiment on the observation of heatmap dif-
ference between SMD and MDS networks.
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